
TikTok Project
In this project I am acting as a data professional at TikTok. My supervisor was impressed the work I've have done and has requested that I build a machine learning model that can be used to determine

whether a video contains a claim or whether it offers an opinion. With a successful prediction model, TikTok can reduce the backlog of user reports and prioritize them more efficiently.

Classifying videos using machine learning
In this project, I will be using machine learning techniques to predict on a binary outcome variable.

The purpose of this model is to increase response time and system efficiency by automating the initial stages of the claims process.

The goal of this model is to predict whether a TikTok video presents a "claim" or presents an "opinion".

This project has three parts:

Part 1: Ethical considerations

In this scenario, it's preferable for the model to generate false positives rather than false negatives. Identifying videos that violate terms of service is crucial, even if it means some opinion videos

are mistakenly labeled as claims. The most severe consequence of misclassifying an opinion as a claim is that the video undergoes human review. However, misclassifying a claim as an opinion

could lead to the video not being reviewed, potentially resulting in a terms of service violation. According to the data dictionary, a video violating terms of service is attributed to a "banned" author.

Part 2: Feature engineering

Perform feature selection, extraction, and transformation to prepare the data for modeling

Part 3: Modeling

Task Overview:

TikTok needs a machine learning model to distinguish between claims and opinions in reported videos due to the sheer volume of reports. Claims, rather than opinions, are more likely to violate terms of

service. By predicting this distinction, the model can streamline human moderation efforts.

Modeling Approach:

Using the 'claim_status' column from the data dictionary as the target variable, the model aims to classify each video as either a claim or an opinion. This constitutes a binary classification task.Build

the models, evaluate them, and advise on next steps

Throughout this project notebook, you'll see references to the problem-solving framework PACE. The following notebook components are labeled with the respective PACE stage: Plan, Analyze,

Construct, and Execute.

PACE: Plan

Selecting an Evaluation Metric:

To gauge the model's performance effectively, we need to address potential errors. There are two types:

False positives: When the model wrongly identifies a video as a claim instead of an opinion. False negatives: When the model mistakenly labels a video as an opinion instead of a claim.

Considering the ethical implications, minimizing false negatives is crucial. Thus, the chosen evaluation metric is recall.

Modeling workflow and model selection process

Previous work with this data has revealed that there are ~20,000 videos in the sample. This is sufficient to conduct a rigorous model validation workflow, broken into the following steps:

1. Split the data into train/validation/test sets (60/20/20)

2. Fit models and tune hyperparameters on the training set

3. Perform final model selection on the validation set

4. Assess the champion model's performance on the test set

Task 1. Imports and data loading

I started by importing packages needed to build machine learning models to achieve the goal of this project.

# Import packages for data manipulation
import pandas as pd
import numpy as np

# Import packages for data visualization
import matplotlib.pyplot as plt
import seaborn as sns

# Import packages for data preprocessing
from sklearn.feature_extraction.text import CountVectorizer

# Import packages for data modeling
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.metrics import classification_report, accuracy_score, precision_score, \
recall_score, f1_score, confusion_matrix, ConfusionMatrixDisplay

from sklearn.ensemble import RandomForestClassifier
from xgboost import XGBClassifier
from xgboost import plot_importance

# Load dataset into dataframe
data = pd.read_csv("tiktok_dataset.csv")

PACE: Analyze

Task 2: Examine data, summary info, and descriptive stats

Inspect the first five rows of the dataframe.

# Display first few rows
data.head()

Get the number of rows and columns in the dataset.

# Get number of rows and columns
data.shape

(19382, 12)

Get the data types of the columns.

# Get data types of columns
data.dtypes

#                             int64
claim_status                 object
video_id                      int64
video_duration_sec            int64
video_transcription_text     object
verified_status              object
author_ban_status            object
video_view_count            float64
video_like_count            float64
video_share_count           float64
video_download_count        float64
video_comment_count         float64
dtype: object

Get basic information about the dataset.

# Get basic information
data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 19382 entries, 0 to 19381
Data columns (total 12 columns):
 #   Column                    Non-Null Count  Dtype  
---  ------                    --------------  -----  
 0   #                         19382 non-null  int64  
 1   claim_status              19084 non-null  object 
 2   video_id                  19382 non-null  int64  
 3   video_duration_sec        19382 non-null  int64  
 4   video_transcription_text  19084 non-null  object 
 5   verified_status           19382 non-null  object 
 6   author_ban_status         19382 non-null  object 
 7   video_view_count          19084 non-null  float64
 8   video_like_count          19084 non-null  float64
 9   video_share_count         19084 non-null  float64
 10  video_download_count      19084 non-null  float64
 11  video_comment_count       19084 non-null  float64
dtypes: float64(5), int64(3), object(4)
memory usage: 1.8+ MB

Generate basic descriptive statistics about the dataset.

# Generate basic descriptive stats
data.describe()

# video_id video_duration_sec video_view_count video_like_count video_share_count video_download_count video_comment_count

count 19382.000000 1.938200e+04 19382.000000 19084.000000 19084.000000 19084.000000 19084.000000 19084.000000

mean 9691.500000 5.627454e+09 32.421732 254708.558688 84304.636030 16735.248323 1049.429627 349.312146

std 5595.245794 2.536440e+09 16.229967 322893.280814 133420.546814 32036.174350 2004.299894 799.638865

min 1.000000 1.234959e+09 5.000000 20.000000 0.000000 0.000000 0.000000 0.000000

25% 4846.250000 3.430417e+09 18.000000 4942.500000 810.750000 115.000000 7.000000 1.000000

50% 9691.500000 5.618664e+09 32.000000 9954.500000 3403.500000 717.000000 46.000000 9.000000

75% 14536.750000 7.843960e+09 47.000000 504327.000000 125020.000000 18222.000000 1156.250000 292.000000

max 19382.000000 9.999873e+09 60.000000 999817.000000 657830.000000 256130.000000 14994.000000 9599.000000

Check for and handle missing values.

# Check for missing values
data.isna().sum()

#                             0
claim_status                298
video_id                      0
video_duration_sec            0
video_transcription_text    298
verified_status               0
author_ban_status             0
video_view_count            298
video_like_count            298
video_share_count           298
video_download_count        298
video_comment_count         298
dtype: int64

# Drop rows with missing values
data = data.dropna(axis=0)

# Check that missing values have been dropped
data.isna().sum()

#                           0
claim_status                0
video_id                    0
video_duration_sec          0
video_transcription_text    0
verified_status             0
author_ban_status           0
video_view_count            0
video_like_count            0
video_share_count           0
video_download_count        0
video_comment_count         0
dtype: int64

Check for and handle duplicates.

# Check for duplicates
data.duplicated().sum()

0

Check class balance.

# Check class balance
data["claim_status"].value_counts(normalize=True)

claim_status
claim      0.503458
opinion    0.496542
Name: proportion, dtype: float64

Approximately 50.3% of the dataset represents claims and 49.7% represents opinions, so the outcome variable is balanced.

PACE: Construct

Task 3: Feature engineering

# Extract the length of each `video_transcription_text` and add this as a column to the dataframe
data['text_length'] = data['video_transcription_text'].str.len()
data.head()

Calculate the average text_length for claims and opinions.

# Calculate the average text_length for claims and opinions
data[['claim_status', 'text_length']].groupby('claim_status').mean()

text_length

claim_status

claim 95.376978

opinion 82.722562

Visualize the distribution of text_length  for claims and opinions.

# Visualize the distribution of `text_length` for claims and opinions
# Create two histograms in one plot
sns.histplot(data=data, stat="count", multiple="dodge", x="text_length",
             kde=False, palette="pastel", hue="claim_status",
             element="bars", legend=True)
plt.xlabel("video_transcription_text length (number of characters)")
plt.ylabel("Count")
plt.title("Distribution of video_transcription_text length for claims and opinions")
plt.show()

/opt/anaconda3/lib/python3.11/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert 
inf values to NaN before operating instead.
  with pd.option_context('mode.use_inf_as_na', True):

Feature selection and transformation

Encode target and catgorical variables.

X = data.copy()
# Drop unnecessary columns
X = X.drop(['#', 'video_id'], axis=1)
# Encode target variable
X['claim_status'] = X['claim_status'].replace({'opinion': 0, 'claim': 1})
# Dummy encode remaining categorical values
X = pd.get_dummies(X,
                   columns=['verified_status', 'author_ban_status'],
                   drop_first=True)
X.head()

Task 4: Split the data

In this case, the target variable is claim_status .

0 represents an opinion

1 represents a claim

# Isolate target variable
y=X['claim_status']

Isolate the features.

X = X.drop(['claim_status'], axis=1)

# Display first few rows of features dataframe
X.head()

Task 5: Create train/validate/test sets

Split data into training and testing sets, 80/20.

# Split the data into training and testing sets
X_tr, X_test, y_tr, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

Split the training set into training and validation sets, 75/25, to result in a final ratio of 60/20/20 for train/validate/test sets.

# Split the training data into training and validation sets
X_train, X_val, y_train, y_val = train_test_split(X_tr, y_tr, test_size=0.25, random_state=0)

Confirm that the dimensions of the training, validation, and testing sets are in alignment.

# Get shape of each training, validation, and testing set
X_train.shape, X_val.shape, X_test.shape, y_train.shape, y_val.shape, y_test.shape

((11450, 11), (3817, 11), (3817, 11), (11450,), (3817,), (3817,))

The number of features (11) aligns between the training and testing sets. The number of rows aligns between the features and the outcome variable for training (11,450) and both validation and testing

data (3,817).

Task 5.5- Tokenize text column

NOTE: You are not expected to do this or know this, but you might find it useful and/or interesting to understand some basic ideas behind natural language processing (NLP), because of the nature of

the data provided in this TikTok project, it is best to process the video_transcription_text column into tokens using natural language processing (NLP). (p.s. I really like NLP!)

The feature video_transcription_text  is text-based. It is not a categorical variable, since it does not have a fixed number of possible values. One way to extract numerical features from it is

through a bag-of-words algorithm like CountVectorizer .

CountVectorizer  works by splitting text into n-grams, which are groups of n consecutive words. For instance, "a dime for a cup of coffee" (phrase A) broken into 2-grams would result in six two-

word combinations:

a dime  | dime for  | for a | a cup  | cup of  | of coffee  |

Then, the next sample's text would be parsed into 2-grams. So, "ask for a cup for a child" (phrase B) would result in:

ask for  | for a | a cup  | cup for  | for a  | a child  |

This process would repeat for each observation in the dataset, and each n-gram would be treated like a distinct feature. Then, the text of each observation is compared to the full array of n-grams, and

the numbers of occurrences are tallied:

a dime dime for for a a cup cup of of coffee ask for cup for a child

phrase A 1 1 1 1 1 1 0 0 0

phrase B 0 0 2 1 1 0 1 1 1

TOTAL 1 1 3 2 2 1 1 1 1

This would happen for the text of each observation in the data, and the text of each observation is parsed to get tallies for all the 2-word phrases from the entire data set for each observation, creating

a large matrix.

If text is broken into 1-grams, then each feature in the matrix is an individual word.

After the count matrix has been created, CountVectorizer  lets us choose to keep only the most frequently occurring n-grams. You specify how many. The n-grams that you select can then be used

as features in a model.

Splitting text into n-grams is an example of tokenization. Tokenization is the process of breaking text into smaller units to derive meaning from the resulting tokens.

This project breaks each video's transcription text into both 2-grams and 3-grams, then takes the 15 most frequently occurring tokens from the entire dataset to use as features.

# Set up a `CountVectorizer` object, which converts a collection of text to a matrix of token counts
count_vec = CountVectorizer(ngram_range=(2, 3),
                            max_features=15,
                            stop_words='english')
count_vec

Fit the vectorizer to the training data (generate the n-grams) and transform it (tally the occurrences). Only fit to the training data, not the validation or test data.

# Extract numerical features from `video_transcription_text` in the training set
count_data = count_vec.fit_transform(X_train['video_transcription_text']).toarray()
count_data

array([[0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       ...,
       [0, 0, 1, ..., 1, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0]])

# Place the numerical representation of `video_transcription_text` from training set into a dataframe
count_df = pd.DataFrame(data=count_data, columns=count_vec.get_feature_names_out())

# Display first few rows
count_df.head()

colleague
discovered

colleague
learned

colleague
read

discovered
news

discussion
board

friend
learned

friend
read

internet
forum

learned
media

media
claim

news
claim

point
view

read
media

social
media

willing
wager

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

# Concatenate `X_train` and `count_df` to form the final dataframe for training data (`X_train_final`)
# Note: Using `.reset_index(drop=True)` to reset the index in X_train after dropping `video_transcription_text`,
# so that the indices align with those in `X_train` and `count_df`
X_train_final = pd.concat([X_train.drop(columns=['video_transcription_text']).reset_index(drop=True), count_df], axis=1)

# Display first few rows
X_train_final.head()

Get n-gram counts for the validation data. Notice that the vectorizer is not being refit to the validation data. It's only transforming it. In other words, the transcriptions of the videos in the validation data

are only being checked against the n-grams found in the training data.

# Extract numerical features from `video_transcription_text` in the testing set
validation_count_data = count_vec.transform(X_val['video_transcription_text']).toarray()
validation_count_data

array([[0, 0, 0, ..., 1, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 1, 0, 0],
       ...,
       [0, 0, 0, ..., 0, 0, 0],
       [0, 1, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0]])

# Place the numerical representation of `video_transcription_text` from validation set into a dataframe
validation_count_df = pd.DataFrame(data=validation_count_data, columns=count_vec.get_feature_names_out())
validation_count_df.head()
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friend
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friend
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learned
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willing
wager

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0

# Concatenate `X_val` and `validation_count_df` to form the final dataframe for training data (`X_val_final`)
# Note: Using `.reset_index(drop=True)` to reset the index in X_val after dropping `video_transcription_text`,
# so that the indices align with those in `validation_count_df`
X_val_final = pd.concat([X_val.drop(columns=['video_transcription_text']).reset_index(drop=True), validation_count_df], axis=1)

# Display first few rows
X_val_final.head()

Repeat the process to get n-gram counts for the test data. Again, I'm not refitting the vectorizer to the test data. Just transforming it.

# Extract numerical features from `video_transcription_text` in the testing set
test_count_data = count_vec.transform(X_test['video_transcription_text']).toarray()

# Place the numerical representation of `video_transcription_text` from test set into a dataframe
test_count_df = pd.DataFrame(data=test_count_data, columns=count_vec.get_feature_names_out())

# Concatenate `X_val` and `validation_count_df` to form the final dataframe for training data (`X_val_final`)
X_test_final = pd.concat([X_test.drop(columns=['video_transcription_text']
                                      ).reset_index(drop=True), test_count_df], axis=1)
X_test_final.head()

Build a random forest model

Task 6. Build models

Fit a random forest model to the training set. Use cross-validation to tune the hyperparameters and select the model that performs best on recall.

# Instantiate the random forest classifier
rf = RandomForestClassifier(random_state=0)

# Create a dictionary of hyperparameters to tune
cv_params = {'max_depth': [5, 7, None],
             'max_features': [0.3, 0.6],
            #  'max_features': 'auto'
             'max_samples': [0.7],
             'min_samples_leaf': [1,2],
             'min_samples_split': [2,3],
             'n_estimators': [75,100,200],
             }

# Define a dictionary of scoring metrics to capture
scoring = {'accuracy', 'precision', 'recall', 'f1'}

# Instantiate the GridSearchCV object
rf_cv = GridSearchCV(rf, cv_params, scoring=scoring, cv=5, refit='recall')

%%time
rf_cv.fit(X_train_final, y_train)

CPU times: user 5min 41s, sys: 1.67 s, total: 5min 42s
Wall time: 5min 42s

# Examine best recall score
rf_cv.best_score_

0.9948228253467271

  # Get all the results from the CV and put them in a df
cv_results_df = pd.DataFrame(rf_cv.cv_results_)

  # Isolate the row of the df with the max(mean precision score)
max_precision_row = cv_results_df[cv_results_df['mean_test_precision'] == cv_results_df['mean_test_precision'].max()]

# Display the isolated row
print(max_precision_row)

# Examine best parameters
rf_cv.best_params_

{'max_depth': None,
 'max_features': 0.6,
 'max_samples': 0.7,
 'min_samples_leaf': 1,
 'min_samples_split': 2,
 'n_estimators': 200}

This model performs exceptionally well, with an average recall score of 0.995 across the five cross-validation folds. After checking the precision score to be sure the model is not classifying all samples

as claims, it is clear that this model is making almost perfect classifications.

Build an XGBoost model

# Instantiate the XGBoost classifier
xgb = XGBClassifier(objective='binary:logistic', random_state=0)

# Create a dictionary of hyperparameters to tune
cv_params = {'max_depth': [4,8,12],
             'min_child_weight': [3, 5],
             'learning_rate': [0.01, 0.1],
             'n_estimators': [300, 500]
             }

# Define a dictionary of scoring metrics to capture
scoring = {'accuracy', 'precision', 'recall', 'f1'}

# Instantiate the GridSearchCV object
xgb_cv = GridSearchCV(xgb, cv_params, scoring=scoring, cv=5, refit='recall')

%%time
xgb_cv.fit(X_train_final, y_train)

CPU times: user 4min 13s, sys: 55.9 s, total: 5min 9s
Wall time: 40.2 s

xgb_cv.best_score_

0.9898176171763818

# Get all the results from the CV and put them in a df
xgb_cv_results_df = pd.DataFrame(xgb_cv.cv_results_)

# Isolate the row of the df with the max(mean precision score)
xgb_max_precision_row = xgb_cv_results_df[xgb_cv_results_df['mean_test_precision'] == xgb_cv_results_df['mean_test_precision'].max()]

# Display the isolated row
print(xgb_max_precision_row)

    mean_fit_time  std_fit_time  mean_score_time  std_score_time  \
1        0.315377      0.005020         0.016239        0.000449   
2        0.195104      0.003032         0.014685        0.000256   
3        0.316161      0.006768         0.015714        0.000795   
6        0.252485      0.008174         0.015206        0.000674   
10       0.244881      0.010561         0.015603        0.000993   

   param_learning_rate param_max_depth param_min_child_weight  \
1                 0.01               4                      3   
2                 0.01               4                      5   
3                 0.01               4                      5   
6                 0.01               8                      5   
10                0.01              12                      5   

   param_n_estimators                                             params  \
1                 500  {'learning_rate': 0.01, 'max_depth': 4, 'min_c...   
2                 300  {'learning_rate': 0.01, 'max_depth': 4, 'min_c...   
3                 500  {'learning_rate': 0.01, 'max_depth': 4, 'min_c...   
6                 300  {'learning_rate': 0.01, 'max_depth': 8, 'min_c...   
10                300  {'learning_rate': 0.01, 'max_depth': 12, 'min_...   

    split0_test_accuracy  ...  std_test_f1  rank_test_f1  split0_test_recall  \
1               0.996070  ...     0.001576             3            0.992228   
2               0.995633  ...     0.001725            20            0.991364   
3               0.995633  ...     0.001644             6            0.991364   
6               0.995633  ...     0.001725            20            0.991364   
10              0.995633  ...     0.001725            20            0.991364   

    split1_test_recall  split2_test_recall  split3_test_recall  \
1             0.987921            0.990509            0.991372   
2             0.985332            0.988783            0.991372   
3             0.988783            0.990509            0.991372   
6             0.985332            0.988783            0.991372   
10            0.985332            0.988783            0.991372   

    split4_test_recall  mean_test_recall  std_test_recall  rank_test_recall  
1             0.983607          0.989127         0.003114                14  
2             0.982744          0.987919         0.003406                22  
3             0.982744          0.988955         0.003246                18  
6             0.982744          0.987919         0.003406                22  
10            0.982744          0.987919         0.003406                22  

[5 rows x 41 columns]

This model performs well, but its recall score is slightly lower than the random forest model's, its precision score is perfect.

PACE: Execute

Task 7. Evaluate model

Evaluate models against validation criteria.

Random forest

# Use the random forest "best estimator" model to get predictions on the validation set
y_pred = rf_cv.best_estimator_.predict(X_val_final)

Display the predictions on the encoded testing set.

# Display the predictions on the encoded testing set
y_pred

array([1, 0, 1, ..., 1, 1, 1])

Display the true labels of the testing set.

# Display the true labels of the testing set
y_val

5846     1
12058    0
2975     1
8432     1
6863     1
        ..
6036     1
6544     1
2781     1
6426     1
4450     1
Name: claim_status, Length: 3817, dtype: int64

Create a confusion matrix to visualize the results of the classification model.

# Create a confusion matrix to visualize the results of the classification model

# Compute values for confusion matrix
log_cm = confusion_matrix(y_val, y_pred)

# Create display of confusion matrix
log_disp = ConfusionMatrixDisplay(confusion_matrix=log_cm, display_labels=None)

# Plot confusion matrix
log_disp.plot()

# claim_status video_id video_duration_sec video_transcription_text verified_status author_ban_status video_view_count video_like_count video_share_count video_download_count

0 1 claim 7017666017 59 someone shared with me
that drone deliveries a... not verified under review 343296.0 19425.0 241.0 1.0

1 2 claim 4014381136 32 someone shared with me
that there are more mic... not verified active 140877.0 77355.0 19034.0 1161.0

2 3 claim 9859838091 31 someone shared with me
that american industria... not verified active 902185.0 97690.0 2858.0 833.0

3 4 claim 1866847991 25 someone shared with me
that the metro of st. p... not verified active 437506.0 239954.0 34812.0 1234.0

4 5 claim 7105231098 19 someone shared with me
that the number of busi... not verified active 56167.0 34987.0 4110.0 547.0

# claim_status video_id video_duration_sec video_transcription_text verified_status author_ban_status video_view_count video_like_count video_share_count video_download_count

0 1 claim 7017666017 59 someone shared with me
that drone deliveries a... not verified under review 343296.0 19425.0 241.0 1.0

1 2 claim 4014381136 32 someone shared with me
that there are more mic... not verified active 140877.0 77355.0 19034.0 1161.0

2 3 claim 9859838091 31 someone shared with me
that american industria... not verified active 902185.0 97690.0 2858.0 833.0

3 4 claim 1866847991 25 someone shared with me
that the metro of st. p... not verified active 437506.0 239954.0 34812.0 1234.0

4 5 claim 7105231098 19 someone shared with me
that the number of busi... not verified active 56167.0 34987.0 4110.0 547.0

claim_status video_duration_sec video_transcription_text video_view_count video_like_count video_share_count video_download_count video_comment_count text_length verified_status_verified

0 1 59 someone shared with me
that drone deliveries a... 343296.0 19425.0 241.0 1.0 0.0 97 False

1 1 32 someone shared with me
that there are more mic... 140877.0 77355.0 19034.0 1161.0 684.0 107 False

2 1 31 someone shared with me
that american industria... 902185.0 97690.0 2858.0 833.0 329.0 137 False

3 1 25 someone shared with me
that the metro of st. p... 437506.0 239954.0 34812.0 1234.0 584.0 131 False

4 1 19 someone shared with me
that the number of busi... 56167.0 34987.0 4110.0 547.0 152.0 128 False

video_duration_sec video_transcription_text video_view_count video_like_count video_share_count video_download_count video_comment_count text_length verified_status_verified author_ban_status_banned

0 59 someone shared with me
that drone deliveries a... 343296.0 19425.0 241.0 1.0 0.0 97 False False

1 32 someone shared with me
that there are more mic... 140877.0 77355.0 19034.0 1161.0 684.0 107 False False

2 31 someone shared with me
that american industria... 902185.0 97690.0 2858.0 833.0 329.0 137 False False

3 25 someone shared with me
that the metro of st. p... 437506.0 239954.0 34812.0 1234.0 584.0 131 False False

4 19 someone shared with me
that the number of busi... 56167.0 34987.0 4110.0 547.0 152.0 128 False False

video_duration_sec video_view_count video_like_count video_share_count video_download_count video_comment_count text_length verified_status_verified author_ban_status_banned

0 51 2487.0 310.0 20.0 1.0 0.0 134 False False

1 43 118512.0 3543.0 374.0 70.0 29.0 97 False True

2 22 105902.0 1885.0 229.0 39.0 9.0 76 False False

3 17 9245.0 1670.0 440.0 13.0 4.0 58 False False

4 18 3791.0 660.0 63.0 9.0 1.0 57 False False

5 rows × 25 columns

video_duration_sec video_view_count video_like_count video_share_count video_download_count video_comment_count text_length verified_status_verified author_ban_status_banned

0 11 578891.0 379596.0 14612.0 6591.0 44.0 72 False False

1 24 6255.0 1709.0 311.0 13.0 1.0 96 False False

2 35 410356.0 249714.0 26235.0 2060.0 1252.0 88 False False

3 58 406911.0 25986.0 1230.0 564.0 248.0 83 False False

4 47 972573.0 138167.0 25320.0 3331.0 968.0 104 False False

5 rows × 25 columns

video_duration_sec video_view_count video_like_count video_share_count video_download_count video_comment_count text_length verified_status_verified author_ban_status_banned

0 54 692084.0 135956.0 16591.0 622.0 312.0 107 False False

1 37 5164.0 1858.0 36.0 17.0 1.0 69 True False

2 39 801951.0 344163.0 57608.0 8578.0 2942.0 90 False False

3 44 6429.0 2314.0 847.0 17.0 5.0 76 False False

4 26 555780.0 106863.0 15348.0 252.0 91.0 72 False False

5 rows × 25 columns
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▾ CountVectorizer

CountVectorizer(max_features=15, ngram_range=(2, 3), stop_words='english')

▸ GridSearchCV
▸ estimator: RandomForestClassifier

▸ RandomForestClassifier

▸ GridSearchCV
▸ estimator: XGBClassifier

▸ XGBClassifier

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html


# Display plot
plt.show()

Confusion Matrix Observations:

The upper-left quadrant displays the number of true negatives: the number of opinions that the model accurately classified as so.

The upper-right quadrant displays the number of false positives: the number of opinions that the model misclassified as claims.

The lower-left quadrant displays the number of false negatives: the number of claims that the model misclassified as opinions.

The lower-right quadrant displays the number of true positives: the number of claims that the model accurately classified as so.

A perfect model would yield all true negatives and true positives, and no false negatives or false positives.

As the above confusion matrix shows, this model does not produce any false negatives.

Create a classification report that includes precision, recall, f1-score, and accuracy metrics to evaluate the performance of the model.

# Create a classification report
# Create classification report for random forest model
target_labels = ['opinion', 'claim']
print(classification_report(y_val, y_pred, target_names=target_labels))

              precision    recall  f1-score   support

     opinion       1.00      1.00      1.00      1892
       claim       1.00      1.00      1.00      1925

    accuracy                           1.00      3817
   macro avg       1.00      1.00      1.00      3817
weighted avg       1.00      1.00      1.00      3817

Classification report observations:

The classification report above shows that the random forest model scores were nearly perfect. The confusion matrix indicates that there were 10 misclassifications—five false postives and five false

negatives.

XGBoost

#Evaluate XGBoost model
y_pred = xgb_cv.best_estimator_.predict(X_val_final)

# Compute values for confusion matrix
log_cm = confusion_matrix(y_val, y_pred)

# Create display of confusion matrix
log_disp = ConfusionMatrixDisplay(confusion_matrix=log_cm, display_labels=None)

# Plot confusion matrix
log_disp.plot()

# Display plot
plt.title('XGBoost - validation set');
plt.show()

# Create a classification report
target_labels = ['opinion', 'claim']
print(classification_report(y_val, y_pred, target_names=target_labels))

              precision    recall  f1-score   support

     opinion       0.99      1.00      0.99      1892
       claim       1.00      0.99      0.99      1925

    accuracy                           0.99      3817
   macro avg       0.99      0.99      0.99      3817
weighted avg       0.99      0.99      0.99      3817

Classification report observations:

The results of the XGBoost model were also nearly perfect. However, its errors tended to be false negatives. Identifying claims was the priority, so it's important that the model be good at capturing all

actual claim videos. The random forest model has a better recall score, and is therefore the champion model.

Use champion model to predict on test data

# Use champion model to predict on test data
y_pred = rf_cv.best_estimator_.predict(X_test_final)

# Compute values for confusion matrix
log_cm = confusion_matrix(y_test, y_pred)

# Create display of confusion matrix
log_disp = ConfusionMatrixDisplay(confusion_matrix=log_cm, display_labels=None)

# Plot confusion matrix
log_disp.plot()

# Display plot
plt.title('Random forest - test set');
plt.show()

Feature importances of champion model

importances = rf_cv.best_estimator_.feature_importances_
rf_importances = pd.Series(importances, index=X_test_final.columns)

fig, ax = plt.subplots()
rf_importances.plot.bar(ax=ax)
ax.set_title('Feature importances')
ax.set_ylabel('Mean decrease in impurity')
fig.tight_layout()

Important features observations:

The most predictive features all were related to engagement levels generated by the video. This is not unexpected, as analysis from prior EDA pointed to this conclusion.

Task 8. Conclusion

1. Would you recommend using this model? Why or why not?

Yes, the model is recommended as it demonstrated strong performance on both validation and test data, with consistently high precision and F1 scores. It effectively classified claims and opinions.

2. What was your model doing? Can you explain how it was making predictions?

The model primarily utilized features related to user engagement levels (views, likes, shares, and downloads) associated with each video to make predictions.

3. Are there new features that you can engineer that might improve model performance?

Given the current high performance of the model, there's no immediate need for new feature engineering.

4. What features would you want to have that would likely improve the performance of your model?

While the current model doesn't require additional features, including variables such as the number of times a video was reported and the total user reports for each author could potentially enhance its

performance.
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